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The NIMROD code has a unique combination of 
advanced numerical methods for high-temperature 
simulation:

• High-order finite element representation of the poloidal plane:

• accuracy for MHD and transport anisotropy at realistic 
parameters: S>106, χ||/χperp>109

• flexible spatial representation

• Temporal advance with semi-implicit and implicit methods:

• multiple time-scale physics from ideal MHD (µs) to 
transport (10-100 ms)

• Coding modularity for physics model development

• Large-scale parallel computing



Selected applications highlight code features.

Tokamak and ST

• Resistive tearing evolution

• Neoclassical tearing mode

• Pegasus ST

Code features

Ø Spatial accuracy

Ø Geometric flexibility

Ø Temporal stiffness

Ø Model development

Ø Parallel computation

Alternates

• Spheromak flux amplification

• Spheromak – RFP comparison
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Simulation of a classical tearing-
mode demonstrates application in
nonlinear low-dissipation 
conditions.
NIMROD Simulation
• S=106

• Pm=τR/τν=0.1
• τA=1µs
• β <<1% to avoid GGJ stabilization

DIII-D L-mode Startup Plasma
[R. LaHaye, Snowmass Report]
• S=1.6x106

• Pm=4.5
• τA=0.34µs
• τE=0.03s
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Small ∆’ (linear γτA=5x10-4) leads to nonlinear 
evolution over the energy confinement time-scale.
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Magnetic Energy vs. Time Saturation of Coupled 
Island Chains

• 5th-order accurate biquartic finite elements resolve anisotropies.
• 20,000 semi-implicit time-steps evolve solution for times > τE.
• Explicit computation is impossibleg2x108 time-steps.



Testing anisotropic thermal conduction at various 
times reproduces the wd

-4 scaling. [Fitzpatrick, PoP 2, 825
(1995)]

• Conductivity ratio is 
scaled until an inflection in 
T within (2,1) island is 
achieved.

• Power-law fit is 
χ||/χperp=3.0x103 (wd /a)-4.2.

• Result is for toroidal 
geometry.

• High-order spatial convergence is required for realistic anisotropy.
• Implicit thermal conduction is required for stiffness.
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The time-scales arising with nonlinear resistive MHD 
evolution indicate the need for drift and transport 
effects.

• Flux-surface average closures derived for transport calculations 
[Hinton and Hazeltine, Rev. Mod. Phys. 48, 239 (1976), for example] 
are not suitable for 3D simulation.
• Gianakon, Kruger, and Hegna assessed heuristic local closures for 
simulating NTM physics with NIMROD [PoP 9, 536 (2002)].  Local 
poloidal flow damping (α=i,e),

captures the important effects found in kinetic analysis that are needed 
for fluid moment evolution.  [Alternatively, the electron force can be re-
expressed using a resistive ordering:]
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NIMROD NTM simulations with (diamagnetic) 
poloidal flow damping reproduce the threshold found 
through small-island-width analysis including DR.

NIMROD simulation results for NTM  
anisotropic conduction threshold 
[Gianakon, et al. PoP 9, 536 (2001) and 
Hegna PoP 6, 3980 (1999) for dw/dt].

• Calculations use an EFIT 
equilibrium for DIII-D discharge 
86144.
• Simulations scan initial island 
width, w(t=0), and viscous 
damping rate, µe, to create a 
nonlinear stability diagram.

• NIMROD’s high-order 
spatial accuracy and semi-
implicit advance meet the need 
for realistic parameters, 
χ||/χperp=1010 and S=2.7x106.  
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For detailed modeling of nonlocal kinetic effects, we 
have developed an approach that solves drift kinetic 
equations to determine closures. [Held, Callen, Hegna, Sovinec, 
PoP 8, 1171 (2001)]

• Drift kinetic equations are solved allowing for maximal ordering of 
collisional and free-streaming terms (no assumptions on ν wrt             )

• Kinetic fluxes are determined via integration along characteristics in a 
3D solution.

• Nonlocal fluxes interact self-consistently with fluid moments.
• A semi-implicit advance allows large time-step.

• This approach is being applied for computing heat flux in RFP and 
NTM simulations.
• Electron stress computations will lead to a more fundamental 
description of NTM evolution.
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Pegasus simulations apply anisotropic conduction 
and η(T) to reproduce nonlinear free-boundary 
evolution.
• Plasma current and 
separatrix evolve self-
consistently with applied 
loop voltage and vertical-
field ramp.

• Transport has a strong 
influence on dynamics.

• High-order spatial 
accuracy is essential for 
distinguishing closed flux 
and open flux through 
modeled transport effects.



This study integrates MHD and transport effects with 
realistic geometry and experimental parameters.
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• Study has focused on 2D evolution, but 3D tearing-mode 
simulation is a straightforward extension for NIMROD.
• Results emphasize interaction between MHD, transport 
effects, and overall performance.

Pegasus data courtesy of A. Sontag. Axisymmetric simulation results.
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A study of spheromak helicity injection and 
sustainment found flux amplification as a result of 
pinch current instability. Z

electrode

Ψ,
B

electrode

RBφ

Unstable Pinch

Spheromak Saturation

• Steady 2D solution to the 
resistive MHD equations is a 
pinch that is unstable to n=1.

• Full 3D evolution finds the 
conversion of toroidal flux to 
poloidal flux as part of the 
MHD saturation (S=103-104).

• Simply connected geometry is 
required.

• Geometric flexibility also 
allows study of gun-driven 
configurations.



Flux amplification is a direct result of the resistive n=1 
pinch mode and the azimuthal average of the resulting 3D 
field. [Sovinec, Finn, del-Castillo-Negrete, PoP 8, 475 (2001).]

• Formation includes magnetic 
reconnection.

• With sufficient drive, the final 
state exhibits limit-cycle 
behavior.

• Removing drive allows flux-
surface formation as 
perturbations decay 
preferentially, and toroidal 
current is driven by induction.

• Detailed studies of 
confinement during transients 
are in progress at LLNL and 
Univ. of WI.



A comparison of spheromak and RFP simulations 
finds a detailed analogy when orientation is made 
with respect to the applied electric field.

YES

NO

• Geometric 
flexibility!!

• Pinch drives 
fluctuations.

• Spheromak poloidal 
flux is analogous to 
RFP toroidal flux. 

Contours of Magnetic Flux

Cylindrical RFP

Flux-core Spheromak

Toroidal RFP



A short periodic cylinder (~RFP) produces nearly the 
same ‘flux amplification’ as a line-tied (spheromak) 
configuration with the same applied E.

• Spheromak n=1 is analogous to 
the RFP m=1 ‘dynamo modes.’
• Flux amplification is an extreme 
version of RFP reversal.

• Physical dimensions influence 
the spectrum.

Line-tied Configuration Periodic Configuration



Present and planned code development will provide 
‘facility’ upgrades to extend application.

• Routine high-S nonlinear 
analysis

• Advanced tokamak 
operation

• Neoclassical polarization 
effects in NTM studies

• Ion drift kinetic effects

Ø Improve parallel linear 
system solution

Ø Flow with high-S

Ø Resistive wall and vacuum

Ø Semi-implicit or implicit 
two-fluid modeling

Ø Non-local drift kinetics

Ø Closures from simulation 
particles / δf

Applications / Needs Development Paths



Conclusions
• The unique combination of numerical capabilities in 
NIMROD enable a wide range of fusion MHD studies.

• flexible and accurate spatial representation
• semi-implicit advance for stiffness

• Application to realistic configurations
• nonlinear analysis for experiments
• extends and confirms theoretical predictions
• motivates model development

• The productive synergy throughout the NIMROD 
effort anticipates future integrated modeling.





A study of the disruption precursor in D3D 
discharge 87009 (with NCS) is an example of 
application to ideal MHD physics in  tokamaks.

• Analytical calculation [Callen, et al. PoP 6, 2963 (1999)] finds 
faster-than-exponential growth of and ideal interchange-like 
mode,

])/exp[( 2/3τt

3/13/23/2 ˆ)2/3( −−≡ hγγτ

where

due to heating that changes the instantaneous growth rate 

( )[ ]1ˆ22 −=− ct ββγω

• The growth-rate scaling compares well with laboratory 
measurements, but the analytic treatment is very approximate.

γγ ˆ<<hand



NIMROD simulations (with β increased for fixed 
boundary computation) confirm the predicted scaling 
in toroidal geometry with the interchange-like mode.  
[Kruger, Schnack, Brennan, Gianakon, Sovinec, NF—submitted]
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Simulation Result
with Heating

Exponential
Growth

• Heating is applied 
proportional to the initial 
pressure distribution.

• Fitting the time-dependence 
for two heating rates produces 
the simulation-determined 
scaling 

28.072.0ˆ~ −−
hγγτ



Pegasus simulations apply anisotropic conduction 
and η(T) to reproduce nonlinear free-boundary 
evolution.
• Plasma current and 
separatrix evolve self-
consistently with applied 
loop voltage and vertical-
field ramp.

• Transport has a strong 
influence on dynamics.

• High-order spatial 
accuracy is essential for 
distinguishing closed flux 
and open flux through 
modeled transport effects.
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